
- **Domain:** Physical Security **Domain:** Physical Security **3:** What are the three types of CPTED solutions? space? **Domain:** Physical Security situational crime prevention? **Domain:** Physical Security **Domain:** Physical Security 7: At what size and how far above effectiveness? the ground should an opening in a building's shell be protected? **Domain:** Physical Security
- - 4: How does situational crime prevention differ from CPTED and defensible

6: What are the four main strategies of second generation CPTED (Four C's)?

8: What two values describe sensor

Domain: Physical Security

5: What are the four approaches to

1: What are the elements of a systems approach to developing a physical

protection system (PPS)?

2: What are the three primary functions of a PPS?

2: Detection, delay, response

1:	Assessment of vulnerability		
	Implementation of countermeasures		
	Evaluation of effectiveness		

Physical Security 1.7.3 p 23

Physical Security 1.1 p 6

4: Situational crime prevention seeks to reduce crime opportunities in all behavioral contexts, not just in the built environment.

Physical Security 3.1.4 p 48

6: Cohesion, capacity threshold (tipping point), community culture, connectivity

Security Management 3.1.4 p 51

8: Probability of detection and confidence level

3: Mechanical measures, human and organizational measures, natural measures

Physical Security 3.1.1 pp 38-39

5: Increase the effort (e.g. target hardening, access control)

Increase the risk (e.g. entry screening, surveillance)

Reduce anticipated rewards (e.g. target removal, property labeling)

Remove excuses (e.g. signage stimulating the conscience, rule setting)

Physical Security 3.1.4 pp 48-49

7: 96 square inches and under 18 feet above the ground

9: What are the three ways to measure profit margins?

10: What are the five main ways of classifying exterior intrusion sensors?

Domain: Physical Security

Domain: Physical Security

ASIS INTERNATIONAL

11: What is the major exterior application of bistatic microwave sensors?

12: What is the primary cause of nuisance alarms for bistatic microwave sensors?

Domain: Physical Security

14: What determines the appropriate focal length for a CCTV lens?

Domain: Physical Security

Domain: Physical Security

15: When should fiber optic cable replace coax cable in video systems?

13: What three factors should determine

selection of a CCTV camera?

Domain: Physical Security

16: What are the four main types of CCTV cameras?

ASSIS INTERNATIONAL dvancing Security Worldwide[®]

Domain: Physical Security

10: Passive/active, covert/visible, line-of- sight/terrain following, volumetric/ line detection, application	9: The detection threshold for PIR sensors, calculated from the difference in temperature between an intruder and the background
Physical Security 4.3.1 p 97	Physical Security 4.2.2 p 122
12: Standing water	11: Detecting a human being crawling or rolling on the ground
Physical Security 4.3.2 p 102	Physical Security 4.3.2 p 102
14: The field of view	13: Sensitivity, resolution, features
Physical Security 5.5 p 148	Physical Security 5.5 pp 142-147
16: Standard analog CCD, IP, infrared, thermal	15: For distances greater than 1,000 feet.

i I **17:** What is the range of light sensitivity for standard analog CCD cameras?

19: Which two types of lamps take

the most time to restart after a

18: What kind of lens has become the standard for camera and lens design?

Domain: Physical Security

Domain: Physical Security

20: What are the general rules of thumb for lighting levels for detection, recognition, and identification?

Domain: Physical Security

power outage?

21: What are the three types of line-transmission installations used in electronic protection systems?

Domain: Physical Security

22: What is the biggest vulnerability of a loop system?

Domain: Physical Security

23: What are the shortcomings of magnetometers?

Domain: Physical Security

24: What bulk explosives detection technology uses pulsed low energy radio waves to determine the presence of nitrogen-rich materials?

AUXILIARY AVAILABLE AVAILA

Domain: Physical Security

18: DC/LC (Direct circuit, logic control)	17: .005 lux to 10 lux
Physical Security 5.6.2 153	Physical Security 5.6.1 p 150
20: Detection – 0.5 fc Identification – 2 fc Physical Security, 6.5 p 179	19: Metal halide and mercury vapor
Physical Security, 6.5 p 179	Physical Security Figure 6-6 p 178
22: All the detectors in an area could be disabled by interrupting the loop at the proper location	21: Loop system, point-to-point system, multiplexed system
Physical Security 7.3.1 p 194	Physical Security 7.3.1 pp 193-197
24: Quadrupole resonance	23: They only detect ferromagnetic materials, so they don't detect metals such as copper, aluminum, and zinc.

I

.

25: What technology is considered the gold standard of trace explosives detection but is hampered by high costs, high maintenance requirements, and the need for expert operators?

Domain: Physical Security

27: What are the three main vulnerabilities of master locks?

Domain: Physical Security

29: What should be the minimum height of a barbed-wire fence?

26: What are the five main types of mechanical locks?

Domain: Physical Security

28: What is the difference between fail safe and fail secure?

Domain: Physical Security

30: To be fire resistant, what are the minimum wall thicknesses for 4-hour vaults and 6-hour vaults?

Domain: Physical Security

31: Above what weight should safes be anchored, according to UL?

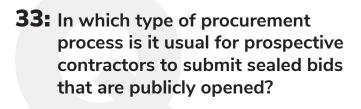
Domain: Physical Security

32: What are the three steps in creating an adversary sequence diagram?

26: Warded lock, lever lock, pin tumbler lock, wafer tumbler lock, dial combination lock	25: Mass spectrometry
Physical Security 8.3.1 pp 240-242	Physical security 8.2.3 p 237
28: A fail safe locking mechanism will unlock under any failure condition, such as power loss. A fail secure mechanism will lock under any failure condition.	27: Attack by force Picking Milled key blanks
Physical security 8.3.2 pp 244-245	Physical Security 8.3.1 p 243
 30: 4-hour vaults: 12 inches of brick or 8 inches of reinforced concrete 6-hour vaults: 12 inches of brick or 10 inches of reinforced concrete 	29: 7 feet, not including top guard
Physical Security 9.5.3 p 282	FPSM 3.2.1.1.5 p 12
32: Describe facility by separating it into adjacent physical areas Define protection layers and path elements between adjacent areas Record detection and delay values for each path element	31: 750 lbs

I I I

Physical Security 11.3.3 p 307


I

I

_ _ _ _ _ _ _ _

Domain: Physical Security

Domain: Physical Security

Domain: Physical Security

Domain: Physical Security

Domain: Physical Security

Domain: Physical Security

33: Invitation for Bid

Physical Security 12.8.3 p 349

_ _ _ _ _ _

Security management 2.3.1 p 22